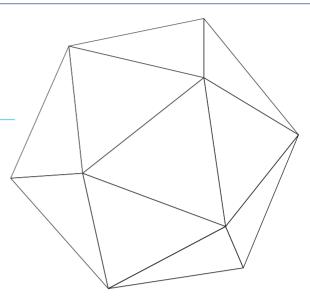
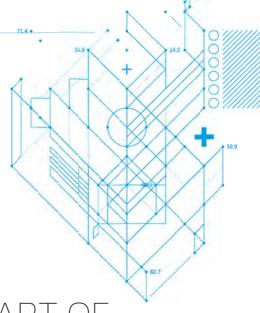


WORKTOPS & SINKS IN TECHNICAL CERAMIC FOR ALL KINDS OF LABORATORIES



OUR WORK IS A WORK IN DEPTH

Worktops and edges shaped with cleverness and research to meet every need.



COLOURSFULL OF LIFE

Energy and personality to enjoy a high quality customized workplace.

PLEASANT **DESIGN LABS**

Personalized solutions, high performance and a design interface open to all CAD software.

THE ART OF WORKMANSHIP

Worktops and surface of all shapes, sizes, thicknesses to realize customised projects.

The **Technology**

: "New techniques and production: procedures have been applied to ceramic."

TECHNICAL **CERAMIC**MIXTURE

MONOLITE IPERGRES® is a **Technical Ceramic** mixture, chemical-technical stoneware, that is single fired at high temperature (1250° C).

NATURAL EARTH RESOURCES

MONOLITE IPERGRES® Technical Ceramic is manufactured from **natural earth resources** as clay, kaolin, feldspar and quartz.

GREEN BUILDING CONCEPT

All the benchmarked materials are "natural" and the production technology has low environmental impact, with absence of any pollutant.

UNIQUE RANGE OF

COLOURS

After a complex research, experimentation on working process and severe control, Laboratorio Pesaro produces on its own exclusive formula clay mixtures and glazes, in a **range of colours unique** on the market.

EXCELLENT **RESISTANCE**

The single-firing technique at high temperature allows the ceramic body to combine firmly with the glaze giving to the glazed surface an **excellent resistance** in time and a very high quality value.

Countries we export to:

PARTNER

400x

ARGENTINA JORDAN
AUSTRIA KUWAIT
BELARUS LATVIA
BELGIUM LITHUANIA
BULGARIA MALAYSIA
CHINA MALTA
COLUMBIA MEXICO

CZECH REPUBLIC NORWAY

DENMARK OMAN SULTANATE

EGYPT POLAND ENGLAND PORTUGAL ESTONIA ROMANIA

FRANCE RUSSIAN FEDERATION

GERMANY SAUDI ARABIA

GREECE SERBIA

HOLLAND SINGAPORE
INDIA SLOVENIA

IRAN SPAIN

IRELAND SWEDEN

ICELAND SWITZERLAND

IRAN THAILAND

ITALY UNITED ARAB EMIRATES

JAPAN UZBEKISTAN

• Laboratorio Pesaro is proud to be a member of **SEFA** – the International Scientific Equipment and Furniture Association

THE STRENGTH POINTS OF EXCELLENCES ▷ P.6

Excellences strength points hexagon

STRONGLY MECHANICAL RESISTANCE

- small thickness for an optimal structural performances of selfsupporting low weight work surfaces; - high resistance values to allow

a thickness lower than 20 mm in dealing with very large dimensions 2200x1100 mm.

HIGH THERMAL STABILITY AND EXCELLENT PERFORMANCES.

- thermal shock resistant to open flames and hot devices
- frost-proof and non-flammable (Euro-class A1).

FULLY VITRIFIED GLAZES FOR A FULLY HYGIENIC SURFACE.

- no stains, no grease and liquids absorption;
- consistent with any detergent;
- ease to be perfectly cleaned and decontaminated of any bacteria and aggressive substances.

LARGE RANGE OF COLOURS AND FINISHES.

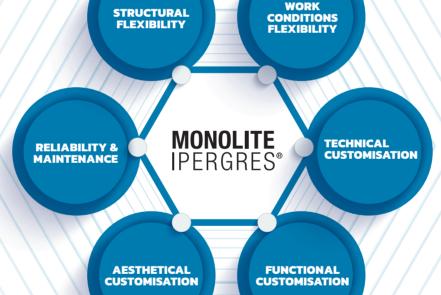
- different glazes for any specific requirements:
- a) satin, ideal for optimizing the work environment,
- b) glossy, to have the best antibacterial performance and ease of cleaning.
- customization of each lab environment with the optimum colour.

CUSTOMIZATION AND SPECIAL FUNCTIONAL PERFORMANCES.

- production of different type of worksurfaces;
- freestanding products or part of complex system requesting a coupling with other components.
- functional performances combined with aesthetical ones.

CUSTOMIZATION AND SPECIAL TECHNICAL FEATURES.

- different kinks of section profiles: flat, "marine", laminar, with relevant changes of thickness.
- every type of hole and opening can be provided with glazed or unglazed cut edges.

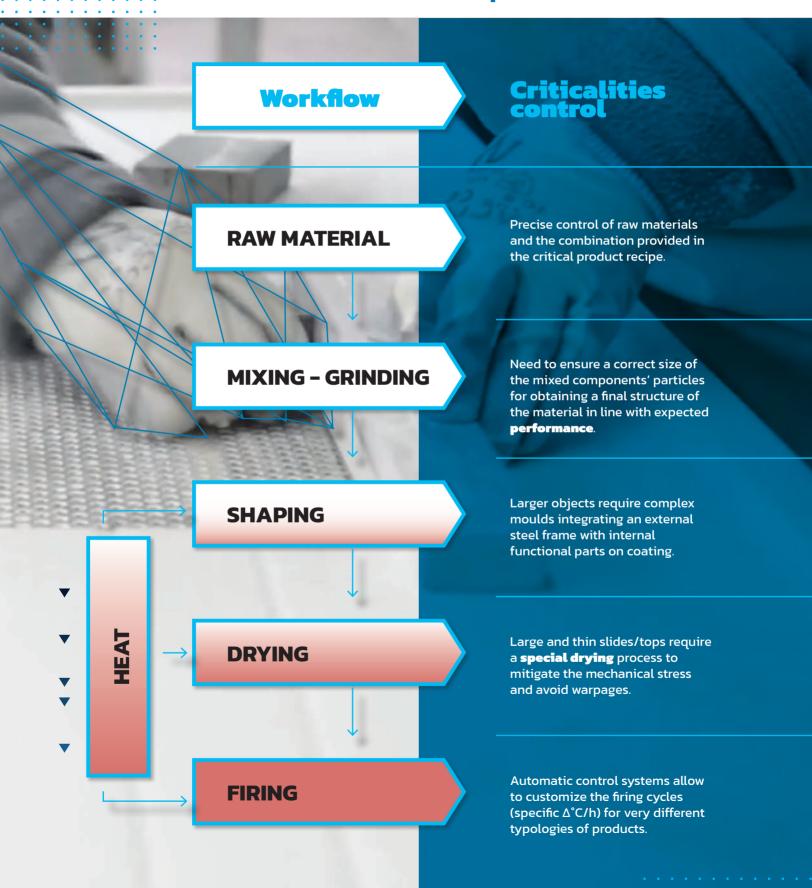

Marketing excellences hexagon

Self-supporting monolithic worksurfaces. various thicknesses and product specifications.

High thermal stability to afford stressing working conditions: thermal shock & aggressive substances.

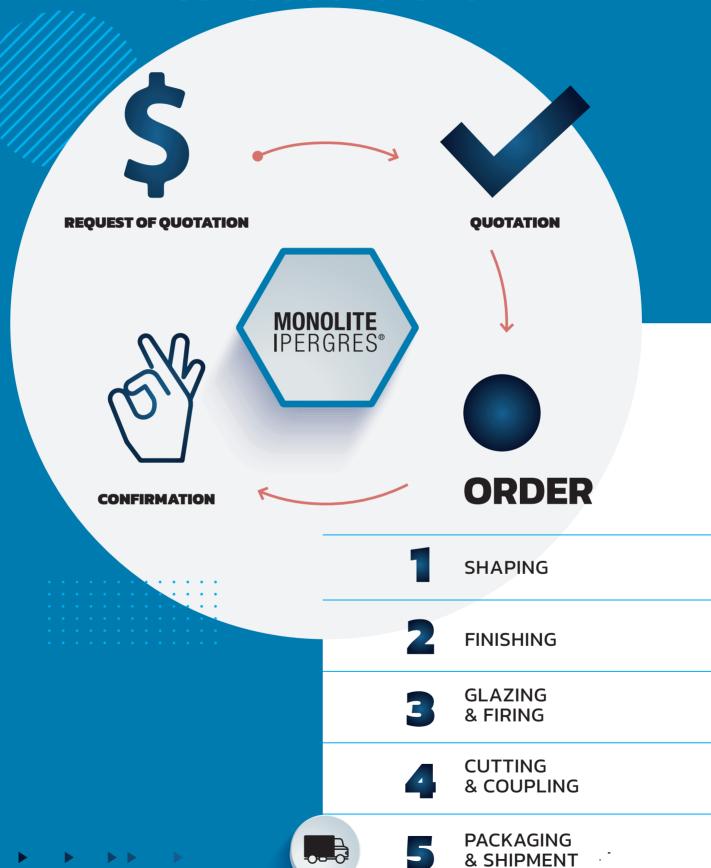
High-performance glazes, long life in hard working conditions of worksurfaces. Perfect & easy decontamination from any substances

& bacteria.

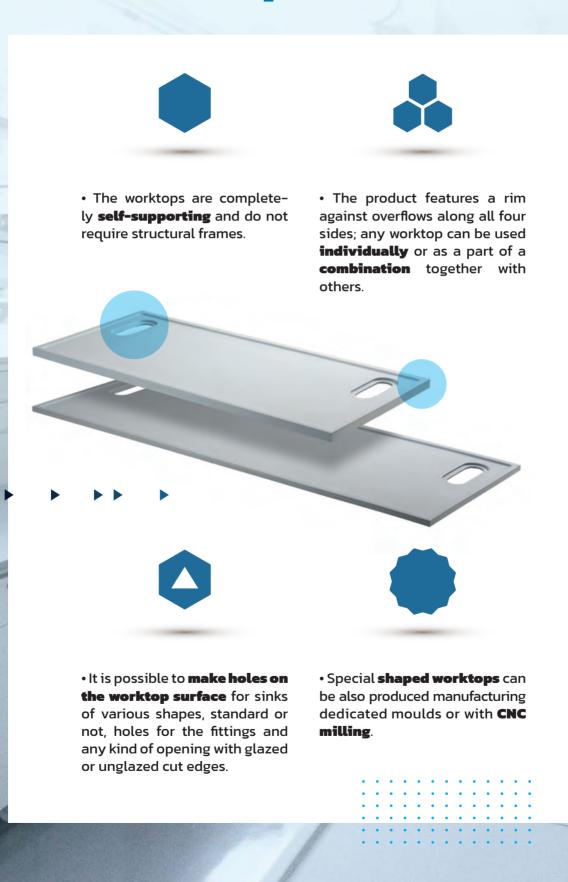


Products can be designed to have different kinks of section profiles: flat, shaped, with relevant changes of thickness.

Wide range of colours. It is possible to customize each lab environment with the optimum colour.


Products can be designed to have functional performances combined with aesthetical ones.

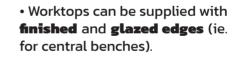
Control of the process



Control of the flow

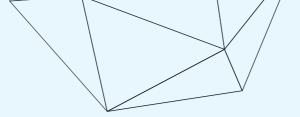
The **product**

The **product**



 In order to have non standard length, worktops with a rim against overflow on all four sides can be cut and assembled "side by side" with CNC 5 axis bridge saw. • The worktops are supplied with a frontal **glazed edge** and the remaining edges can be cut to the desired size; the two short edges are finished with a special cold-applied enamelling of the same hue of the worktop.

- In order to **optimize packing** and decrease **transportation** costs, sinks are normally supplied as detached part. On demand, they can be assembled together.
- The worktops made of Tecnical Ceramic have geometric features tolerances respecting **DIN 12916.**



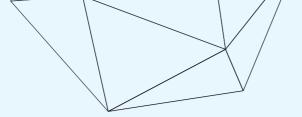
Performance

The Department for Territory and Geological Resources of the Politecnico in Turin and the Ceramic Centre in Bologna

have carried out some physical and mechanical tests on **MONOLITE IPERGRES®** samples with these results:

STRUCTURAL PROPERTIES	VALUE
Density (weight for unit of volume g/cm3) – DIN 51064	2.17
Weight H2O mm Worktops per Square meter (+/- 5%)	43.50
Weight H28 mm Worktops per Square meter (+/- 5%)	44.80
Weight H38 mm Worktops per Square meter (+/- 5%)	48.50
DIMENSIONAL PROPERTIES AND QUALITY GLAZED SURFACE	
Dimensional and geometrical properties - UNI EN ISO 10545 - 2 / DIN 12916	Compliant
Colour stability to Light and UV rays - UNI EN ISO 10545 - 16	Maximum
MECHANICAL PROPERTIES	
Determination of moduls of rupture and breaking strength - EN ISO 10545 - 4	
Average breaking load (N)	16,114
Average breaking strength (N)	14,649
Average Modulus of rupture (N/m2)	43.10
Flexural strength after frost resistance test (EN 100 – MPa)	40.60
Determination of impact resistance by measurement of coefficient of restitution EN ISO 10545 – 5	0.80
MECHANICAL PROPERTIES OF THE GLAZED SURFACE	
Determination of resistance to surface abrasion (UNI EN ISO 10545 – 7) Abrasion Stage PEI	5 Maximum
Hardness according to Mohs - DIN EN 101	6
THERMAL PROPERTIES	
Linear Thermal Expansion coefficient (10–6 $^{\circ}$ C–1) – UNI EN ISO 10545 – 8	6.5 - 7.0
Thermal Shock Resistance - UNI EN ISO 10545 - 9	ОК
Crazing Resistance - UNI EN ISO 10545 - 11	ОК
Frost Resistance - UNI EN ISO 10545 - 12	ОК
Thermal Resistance (exposure up to 10 Hrs.)	up to 900 °C
CHEMICAL RESISTANCE	
Determination of Chemical Resistance of glaze surface – UNI EN ISO 10545 – 13	OK Maximum
Determination of stain resistance – UNI EN ISO 10545 – 14	OK Maximum
SAFETY PROPERTIES	
Releasing of Dangerous Substances, skid resistance - UNI EN ISO 10545 - 15	
Pb	0.00
Cd	0.00
Behaviour in Fire (Combustible material) - DIN EN 13501 - 1 - Euroclass A1	NO
Rediation Hygiene Certificate	ОК

Chemical Resistance Tests (in alphabetical order A > Z)


DEACENT	DEC. U.T.
REAGENT	RESULT
Acetic Acid (99%)	No effects
Acetic Anhydride	No effects
Acetone	No effects
Acetonitrile	No effects
Acridine Orange	No effects
Alizarin Complexone Dihydrate	No effects
Ammonium Hydroxide (28%)	No effects
Amylacetat	No effects
Aniline blue, Water Soluble	No effects
Benzene	No effects
Butyl Alcohol	No effects
Carbol Fuchsin	No effects
Carbon Tetrachloride	No effects
Carmine	No effects
Chloroform	No effects
Chromium (VI) Oxide (60%)	No effects
Congo Red	No effects
Copper Sulphate (10%)	No effects
Cresol	No effects
Crystal Violet (Gentian)	No effects
Dichlor Acetic Acid	No effects
Dichlormethane	No effects
Dioxane	No effects
Eosin B	No effects
Ethylalcohol	No effects
Ethyl Acetate	No effects
Ethylene Glycol	No effects
Ethyl Ether	No effects
Ferric (III) Chloride (10%)	No effects
Formaldehyde (37%)	No effects
Formic Acid (99%)	No effects
Fuchsin (basic)	No effects
Furfural	No effects
Gasoline	
	No effects No effects
Giemsa Stain	
Hydrochloric Acid (37%)	No effects
Hydrofluoric Acid (48%)	Failed
Hydrogen Peroxide	No effects
Iodine Solution (0.1 N)	No effects

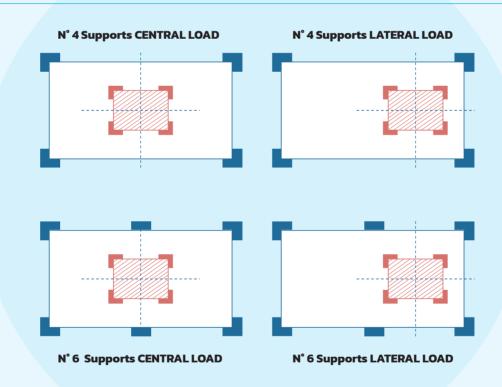
REAGENT	RESULT
lodine (Crystals and Tincture)	No effects
Malachite Green Oxalate	No effects
Methylalcohol	No effects
Methylene Blue	No effects
Methylethylketone	No effects
Methylisobutylketone	No effects
Methyl Violet 2B	No effects
Mono Chlorobenzene	No effects
n-Butyl Acetate	No effects
n-Hexane	No effects
Naphtaline	No effects
Nitric Acid (70%)	No effects
Perchloric Acid (60%)	No effects
Phenol	No effects
Phosphoric Acid (85%)	No effects
Potassium lodite (10%)	No effects
Potassium Permanganate(10%)	No effects
Safranine O	No effects
Silver Nitrate (1%)	No effects
Sodium Chloride (10%)	No effects
Sodium Hydroxide (40%)	No effects
Sodium Hydroxide (flakes)	No effects
Sodium Hypochlorite (13%)	No effects
Sudan III	No effects
Sulphuric Acid (98%)	No effects
1/2 Sulphuric Acid (85%)+ 1/2 Nitric Acid (70%)	No effects
Tetrahydrofurane	No effects
Toluene	No effects
Trichlorethylene	No effects
Xylene	No effects
Zinc Chloride Saturated	No effects

Informations based on in-house and Worldwide Customers' Tests as of May 2022.

Informations provided and intended only to show **MONOLITE IPERGRES®** wide range of applications but not valid as guarantee in any way. Customers are kindly asked to conduct their own tests for specific needs and applications.

Mechanical performance Supports and LOADING CONDITIONS

The Department of Industrial Engineering and Mathematical Sciences of Marche Polytechnic University of Ancona has carried out several tests on **MONOLITE IPERGRES®** Technical Ceramic.

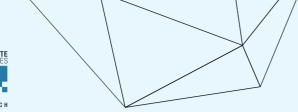

These tests have deepen verified **MONOLITE IPERGRES®** features to identify reliable performances and parameters to be use in FEM (Finished Element Method) analysis.

We have been able to tune a customized a FEM simulation software to estimate the Maximum Static Load to apply on a worktop surface in safety conditions

Safety conditions means that all strengths in the product sections must be less than 50% of Average Breaking Strength of **MONOLITE IPERGRES®** technical ceramic: **safety factor 2**.

Three different and significant sections and typologies of worktops have been verified considering number and position of worktop supports and loading conditions:

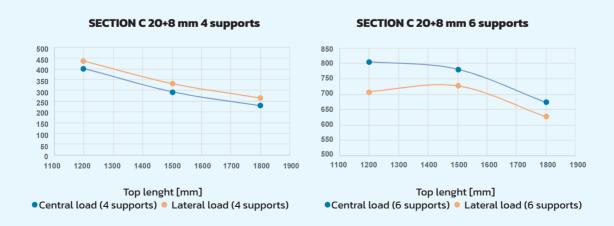
- ▶ Two loading conditions have been verified: central and lateral load.
- ► Two different number and position of worktop supports have been considered: n° 4 and n° 6, one on each edge plus 2 in the middle of long sides



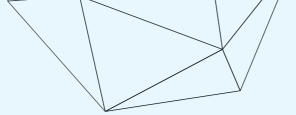
To simulate realistic load conditions, the weight of an appliance on a worktop it has been considered a load distributed on four supports at a distance of 400 mm each other.

1600 1700





echanical performance **RESULTS FOR THREE TYPES OF WORKTOPS**


To simulate the behaviors of the three sections, A-B-C, three different lengths of worktops, 1200 - 1500 and 1800 mm, have been analyzed under load using our MONOLITE IPERGRES® customized FEM software.

SECTION A 12+8 mm 4 supports SECTION A 12+8 mm 6 supports 1400 1500 Top lenght [mm] Top lenght [mm] Central load (6 supports) Lateral load (6 supports) • Central load (4 supports) • Lateral load (4 supports)

Material comparison

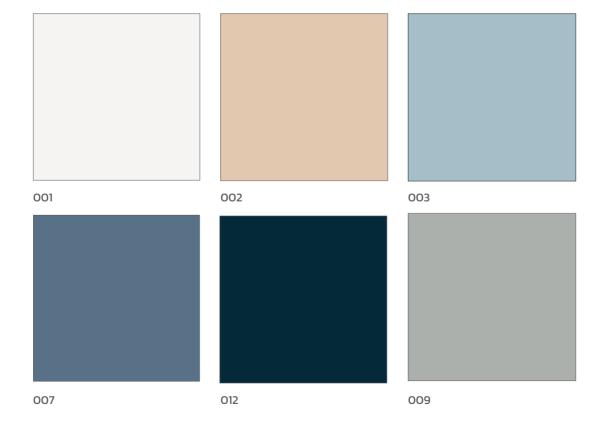
				NAME OF SURFACE SAMPLE OR MATERIAL TESTED						
	A A A TO				JORFACE .		MAILNIA			
S	AMPLE NO.	CERAMIC			PLASTIC					
No. of	Chemical reagent	Monolite Ipergres Ceramic	KS-12 Ceramic - glossy enamel	KS-12 Ceramic - mat enamel	Quarella Ceramic	Sloplast Plastic	Trespa Top Lab Plastic	Wilsonart Plastic	Labolam Plastic	Isomax Plastic
1.	Nitric acid, concentrated 65%									
2.	Nitric acid, diluted 10%									
3.	Sulphuric acid, concentrated 96%									
4.	Sulphuric acid, diluted 10%									
5.	Nitric and sulphuric acids, concentr.1:3									
6.	Hydrofluoric acid (37%)									
7.	Hydrochloric acid, concentrated 37%									
8.	Hydrochloric acid, diluted 10%									
9.	Phosphoric acid (73%)									
10.	Chromic acid (60%)									
11.	Sodium dichromate									
12.	Potassium dichromate (concentrated sulphuric acidsolution)									
13.	Ammonia (28%)									
14.	Trichloroacetic acid									
15.	Acetic acid, glacial									
16.	Hydrogen peroxide (33%)									
17.	Sodium hydroxide (50%)									
18.	Sodium hydroxide (10%)									
19.	Potassium hydroxide (50%)									
20.	Potassium hydroxide (10%)									
21.	Acetone									
22.	Toluene									
23.	Hexane									
24.	Dioxane									
25.	Butyl acetate, mineral spirits, o-xylol (1:1:1)									
26.	Benzene									
27.	DICHLOROATHANE (10%)									
28.	DICHLOROATHANE (20%)									
29.	Carboxylic acid, phenol (90%)									
30.	Methyl ethyl ketone									
	Carbon tetrachloride									
	Dimethylformamide									
33.	Potassium permanganate solution									
34.	lodine solution									
35.	Bromine phenol blue (0,1%)									
	Methyl red (0,1%)									
	Methyl orange (0,1%)									
	Methyl blue (0,1%)									
39.	Phenolphthalein (0,1%)									
	Abrasion resistance (scratch)									
_	Shock resistance									
	100 C°									
	150 C°									
	200 C°									
	300 C°									

MECHANICAL & TECHNICAL PERFORMANCES

MATERIAL COMPARISON ⊳ P.17

(KINDLY OFFERED BY OUR RUSSIAN CUSTOMER LAMO)

NAME OF SURFACE SAMPLE OR MATERIAL TESTED COMPOUNDS OTHER MATERIALS											
10	11	12	13	14	15	16	17	18	19	20	21
abgrade Plastic	Durcon epoxy compound	Krizopol epoxy compound	Glassfiber Reinforced Plastic	Polypropylene	Lexan polycarbonate	Stainless steel	Varnished Metal	Glossy Laminate	Mat Laminate	Puhos white waterproof melamine	Glass
	 										

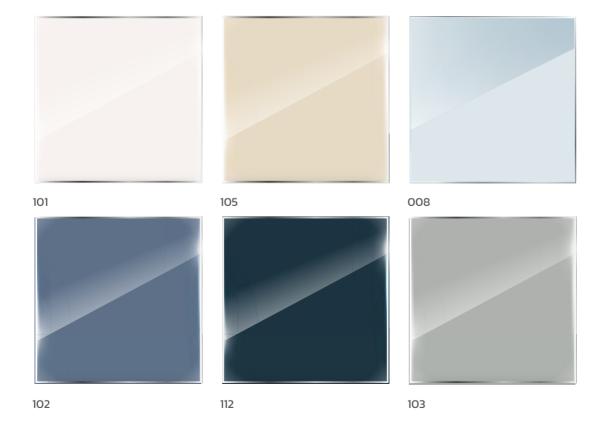


Eco-logic & **eu** satin colours

CODE	COLOUR	CLOSEST RAL
001	WHITE	9003
002	BEIGE	1015
003	LIGHT GREY	7035
007	GREY BLUE	5014
012	BLACK	5008
009	GREY dark	7043

MONOLITE IPERGRES produces glazes on its own exclusive recipe in a wide range of **SATIN** colours. It has set raw materials selecting very high quality pigments, oxids and minerals.

The single-firing technique at high temperature allows the ceramic body to combine firmly with the glaze giving to the glazed surfaces an excellent resistance versus mechanical stress and aggressive substances.

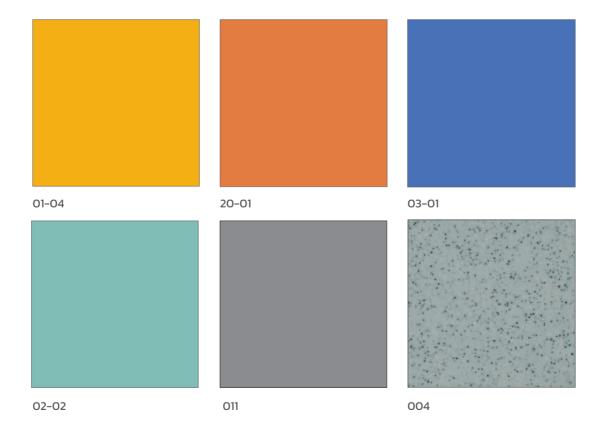


Bio-logic glossy colours

CODE	COLOUR	CLOSEST RAL
101	WHITE	9016
105	SILT	1013
800	LIGHT GREY	7038
102	LILAC	5014
112	BLACK	5008
103	GREY	7035

The **BIO-LOGIC** new range of **GLOSSY** colours provides work surfaces which a universal ultimate performance in the chemical, biological and health laboratory environment.

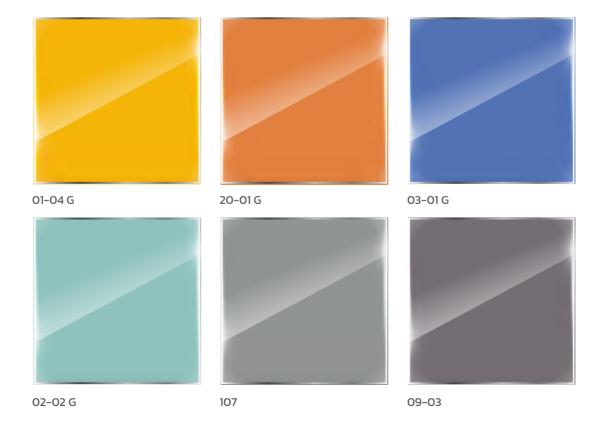
High resistance to acid, bases and organic solvents. Effective and long lasting, simple microbiological sanitation even using detergents with low environmental impact.



CODE	COLOUR	CLOSEST RAL
01-04	YELLOW	1004
20-01	ORANGE	2011
03-01	LIGHT BLUE	5023
02-02	LIGHT GREEN	6027
011	DARK GREY	7042
004	LIGHT DOTTED GREY	7038

MONOLITE IPERGRES® produces glazes on its own exclusive recipe through a severe control of raw materials and in a range of colours unique on the market.

A new rang of **SATIN** colours has been designed to best respond to specific requirements of different work environments: it is possible to customize each lab environment with the optimum colour.



Glossy colours collection

CODE	COLOUR	CLOSEST RAL
01-04 G	YELLOW	1004
20-01 G	ORANGE	2011
03-01 G	LIGHT BLUE	5023
02-02 G	LIGHT GREEN	6027
107	TAUPE	7042
09-03	AUBERGINE	7036

The new rang of **GLOSSY** colours provides work surfaces which can be easly and perfectly cleaned and decontaminated of any bacteria and aggressive substances.

Small variation of the colour tone come into normality due to the variability of behaviour of the product during the firing at very high temperature (1250 °C)

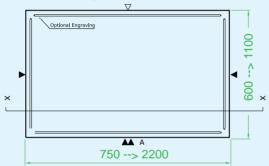
Index of technical subjects

FLAT WORKTOPS ► Eco-logic Worktops H 20 mm Flat Superlight pag. 23 ► EU Worktops H 25 mm Flat Light pag. 24 **MARINE EDGES WORKTOPS** ▶ Bio-logic Worktops H 20 mm Marine Edge pag. 25 ► Eco logic Worktops H 28 mm Marine Edge pag. 26 ► EU Worktops H 33 mm Marine Edge pag. 27 **SPECIAL WORKTOPS** ► Monoblock Worktops pag. 28 **SPECIAL HI-TECH HOOD GLAZED SURFACES** ► H 10 mm Fume Hood Antl Acid Panels pag. **29 SPECIAL SINKS** ► Monoblock Sinks pag. **30** ► Mammut Sinks pag. 31 **SINKS** ► EU Sinks pag. 32 ► Square Sinks pag. **33** ► Rectangular Sinks pag. 34 ► Special Small & Special Sinks pag. **35 NEW SINKS** ► Hand Wash Station pag. **36** ► On Top Small Sinks pag. **37 SINKS MOUNTING SPECIFICATIONS** ► Sinks - Under Top Mounting pag. 38

pag. 39

► Sinks - On Top and Flush mounting

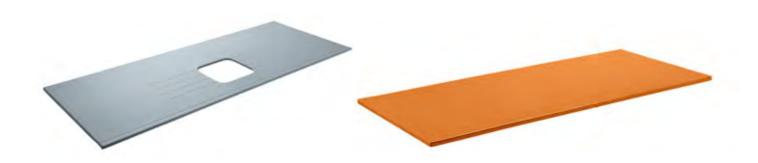
Eco-logic Worktops H 20 mm Flat Superlight


EDGE TYPES

CODE	A (mm)	B (mm)	kg
031	750	600 / 750	18 / 22
	900	600 / 750	22 / 27
	1200	600 / 750	29 / 36
	1500	600 / 750	36 / 45
	1800	600 / 750	43 / 54
	2000	600 / 750	48 / 60
	2200	600 / 750	53 / 66

UPPER VIEW

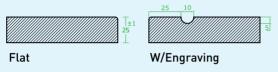
SECTION X-X


LOWER VIEW

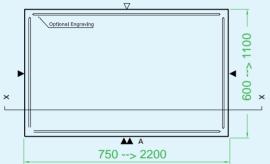
MONOLITE IPERGRES® worktops can be manufactured also in a completely flat version. This kind of slab, 20 mm thick, can be supplied as a unique top of up to 2200 x 1100 mm.

In order to reach a non-standard or very long working surface, worktops can be cut to size and all the rims, standard or not, will tidely and nicely match.

H 20 mm worktops are available either completely flat or with an optional engraving against overflow on some or all sides as customer needs. Details of the engraving in the drawings on the left.


Worktops made of technical ceramic have geometric features tolerances respecting **DIN 12916.**

EU Worktops **H 25 mm** Flat Light


EDGE TYPES

CODE	A (mm)	B (mm)	kg
231	750	600 / 750	19 / 23
	900	600 / 750	23 / 28
	1200	600 / 750	30 / 38
	1500	600 / 750	38 / 48
	1800	600 / 750	46 / 58
	2000	600 / 750	50 / 63
	2200	600 / 750	56 / 69

UPPER VIEW

SECTION X-X

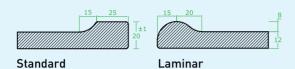
LOWER VIEW

MONOLITE IPERGRES® worktops can be manufactured also in a completely at version. This kind of slab, 25 mm thick, can be supplied as a unique top of up to 2200 x 1100 mm.

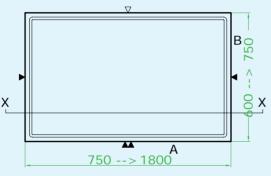
In order to reach a non-standard or very long working surface, worktops can be cut to size and all the rims, standard or not, will tidely and nicely match.

H 25 mm worktops are available either completely flat or with an optional engraving against overflow on some or all sides as customer needs. Details of the engraving in the drawings on the left.

Worktops made of technical ceramic have geometric features tolerances respecting **DIN 12916.**

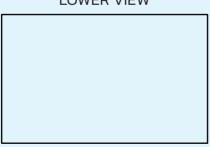


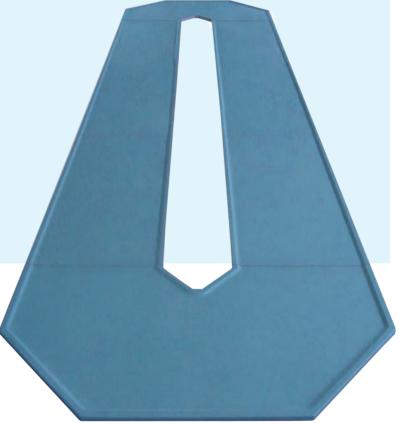
Bio-logic Worktops H 20 mm Marine Edge


FRONT EDGE TYPES

CODE	A (mm)	B (mm)	kg
CCHR F23	750	600 / 700	13 / 15
CCHR G23	900	600 / 750	15 / 18
CCHR A23	1200	600 / 750	19 / 24
CCHR B23	1500	600 / 750	24 /30
CCHR C23	1800	600 / 750	29 / 35
CCHR D23	2000	600 / 750	33 / 38

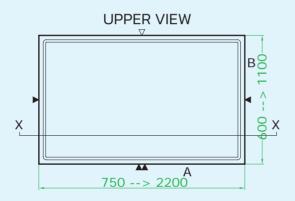
UPPER VIEW



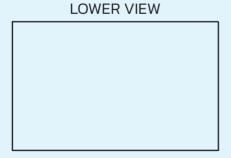

MONOLITE IPERGRES® stoneware mixture is exclusive: structural, chemical and tactile high performance. Each raw material is absolutely sustainable and free of any harmful substance.

BIO-LOGIC WORKTOPS are ultra thin but high resistant, optimized for medium mechanical stresses working conditions. The product features a rim against overflows along all four sides.

SECTION X -X



Eco logic Worktops H 28 mm Marine Edge


FRONT EDGE TYPES 15 25 11 15 20 20 Standard Laminar

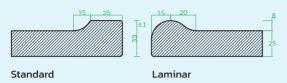
CODE	A (mm)	B (mm)	kg
CCHR F	750	600 / 750	21 / 26
CCHR G	900	600 / 750	25 / 31
CCHR A	1200	600 / 750	33 / 40
CCHR B	1500	600 / 750	41 / 50
CCHR C	1800	600 / 750	48 / 60
CCHS D	2000	600 / 750	54 / 66
CCHR P	2200	600 / 750	60 / 73

LARGE WORKTOPS

CODE	A (mm)	B (mm)	kg
CCHR G	900	850 / 900	35 / 37
CCHR A	1200	850 / 900	44 / 47
CCHR B	1500	850 / 900	55 / 59
CCHR C	1800	850 / 900	68 / 72
CCHS D	2000	850 / 900	73 / 78
CCHS D	2000	1000	88
CCHS D	2200	1100	107

Lenght, depth and marine edge can be also tailor- made. Simply send us your CAD drawings!

Worktops made of technical ceramic have geometric features tolerances respecting **DIN 12916**.



EU Worktops **H 33 mm** Marine Edge

FRONT EDGE TYPES



CODE	A (mm)	B (mm)	kg
CCHR FO3	750	600 / 750	22 / 27
CCHR GO3	900	600 / 750	26 / 32
CCHR AO3	1200	600 / 750	34 / 42
CCHR BO3	1500	600 / 750	42 / 52
CCHR CO3	1800	600 / 750	50 / 62
CCHS DO3	2000	600 / 750	56 / 69
CCHR PO3	2200	600 / 750	63 / 76

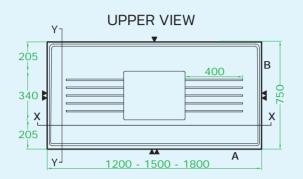
SECTION X -X

LOWER VIEW

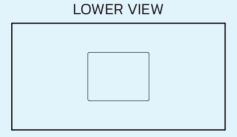
LARGE WORKTOPS

CODE	A (mm)	B (mm)	kg
CCHR GO5	900	850 / 900	34 / 39
CCHR A05	1200	850 / 900	45 / 49
CCHR B05	1500	850 / 900	56 / 61
CCHR CO5	1800	850 / 900	67 / 74
CCHS DO5	2000	850 / 900	76 / 80
CCHS DO5	2000	1000	92
CCHS DO5	2200	1100	112

Lenght, depth and marine edge can be also tailor- made. Simply send us your CAD drawings!


Worktops made of technical ceramic have geometric features tolerances respecting **DIN 12916.**

Monoblock Worktops



CODE	A (mm)	B (mm)	H (mm)	h (mm)	kg
CCHR A33	1200	750	70	28	35
CCHR B33	1500	750	70	28	45
CCHR C33	1800	750	70	28	55

SECTION X -X

CUTTING EDGE PROTECTION

Monoblock Worktops with ultra-protective perimeter edge. Sinks, drainings and fittings on customer's drawings.

Special "Hi_Tech Hood" glazed surfaces

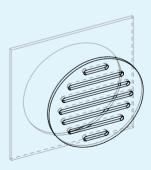
FLAT SUPERLIGHT SURFACES H 10 mm

HIGH-TECH HOOD glazed surfaces have a thickness of only 10 mm and they can be used as acid-resistant inner coatings of hoods.

Large slabs can be shaped and cut to size, with water jet technology, in order to obtain the panels with which to make the internal coatings of hoods.

It is possible to make any kind of opening, regular or special shape to allow the hood the proper flow of suction.

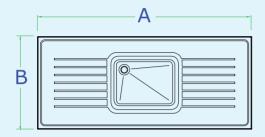

Cut edges can be finished with a special cold-applied enamelling of the same hue of the surface glaze.

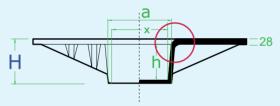

Simply send us your CAD drawings!

HIGH-TECH HOOD glazed surfaces have maximum dimensions of a single slab H 10 mm are 2000x1000 mm.

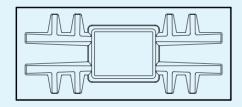
In order to have non standard dimensions of the inner coatings of hoods, panels can be cut and assembled "side by side" with CNC 5 axis bridge saw.

Panels made of technical ceramic have geometric features tolerances respecting **DIN 12916.**





Monoblock Sinks


UPPER VIEW

FRONTAL VIEW

LOWER VIEW

LATERAL VIEW

The **MONOBLOCK** range of sink is designed to have no junctions between the two elements: worktop and sink. A solution that eliminates the most critical area for potential accumulation of dirt where contamination from bacteria and germs can generate. Effective, long lasting and simple sanitation even using detergents with low environmental impact.

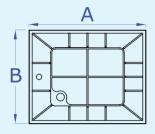
The connection between the sink and the worktop is smooth so to maximize the useful dimensions of the sink opening and to eliminate potential breakages of fragile edges during use.

An optimized geometric solution of the load-bearing elements has been designed to obtain the support of work-top suspended parts. To contain the additional weight and maximize the load-bearing effect of the cantilevered parts, the section of the load-bearing elements is made of "boxed profile".

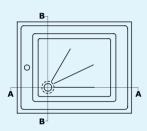
To optimize weight versus maximum load-bearing effect of all the parts of product, the uidity and capability to homogeneously ll very thin sections of **MONOLITE IPER-GRES**® technical ceramic have been exploited to the full.

The worktop features a "Marine" rim against over ows along all four sides. An absolutely innovative design solution for a "head bench" of a complex layout of worktops. A double draining helps the easy drainage of the drain water into the sink.

MONOBLOCK SINKS COLLECTION


CODE	Α	В	Н	a	b	h	Х	У	kg
CCHR KB	1500	650	300	490	390	250	410	310	60
CCHR KC	1500	750	300	490	390	250	410	310	70

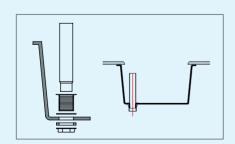
Mammut Sinks


LOWER VIEW

MAMMUT COLLECTION FREE STANDING SINK

CODE	Α	В	Н	a	b	h	x	У	kg
ССН МН	600	750	270	430	550	250	350	450	27
CCH MF	750	750	270	530	550	250	450	450	31
ССН MG	900	750	270	750	550	250	600	450	36
ССН МА	1200	750	270	950	550	250	730	330	45

UPPER VIEW



A - A SIDE VIEW

B - B SIDE VIEW

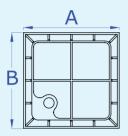
OVER - FLOW SET - TUBE

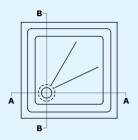
The **MAMMUT** range of sink is designed to have no junctions between the two elements: worktop and sink. A solution that eliminates the most critical area for potential accumulation of dirt where contamination from bacteria and germs can generate. Effective, long lasting and simple sanitation even using detergents with low environmental impact.

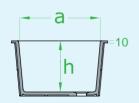
The connection between the sink and the worktop is smooth so to maximize the useful dimensions of the sink opening and to eliminate potential breakages of fragile edges during use.

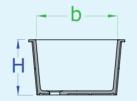
The worktop features a "Marine" rim against overflows along all four sides.

The product walls together with vertical ribs perform a structurally supporting function for the worktop, improving its dimensional stability and flatness. To optimize weight versus maximum load-bearing effect of all the parts of product, the fluidity and capability to homogeneously fill very thin sections of **MONOLITE IPERGRES®** technical ceramic have been exploited to the full.

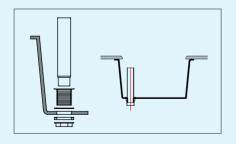





LOWER VIEW



UPPER VIEW



A – A SIDE VIEW B – B SIDE VIEW

OVER - FLOW SET - TUBE

SINKS EXTERNAL OVERFLOW

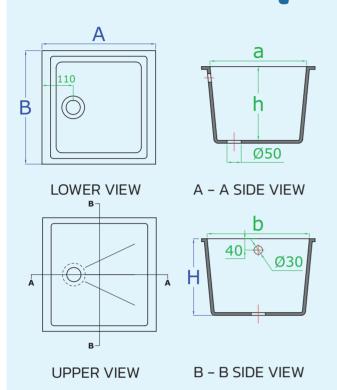
CODE	Α	В	Н	a	b	h	kg
ССНА К	420	200	260	380	160	250	6
ССНА Н	450	300	260	390	240	250	9
CCHA V	470	470	270	400	400	250	14,5
ссна х	570	470	270	500	400	250	16
ССНА Ү	670	470	270	600	400	250	18,5
CCHA Z*	870	470	270	800	400	250	24

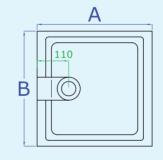
ON TOP - FLUSH - UNDER TOP MOUNTING

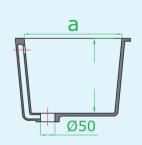
The EU range of sink is designed to ensure high mechanical performance of use, maximum load that the bottom can withstand, but be as light as possible according with the constraints of the production technology.

The sinks wall thickness is about 10 mm. To keep these thin walls dimensionally stable, structural ribs are introduced. Sink walls together with vertical ribs perform a structurally supporting function for the really thin upper frame, improving its dimensional stability and flatness.

To optimize weight versus maximum load-bearing effect of all the parts of the sink, the fluidity and capability to homogeneously fill very thin sections of **MONOLITE IP-ERGRES**® technical ceramic have been exploited to the full.



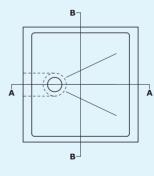

Square Sinks

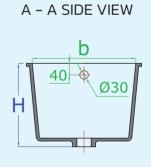


SQUARE SINKS EXTERNAL OVERFLOW

CODE	Α	В	Н	a	b	h	kg
ССНА С	300	300	200	255	255	180	5,5
CCHA D	400	400	250	340	340	230	9,5
CCHA G	450	450	270	380	380	250	13

ON TOP - FLUSH - UNDER TOP MOUNTING



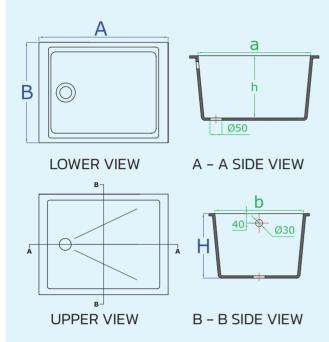

CODE	Α	В	Н	а	b	h	kg
CCHA D	400	400	290	340	340	230	10
CCHA G	450	450	290	380	380	250	13,5

SQUARE SINKS INTEGRATED OVERFLOW

UNDER TOP MOUNTING

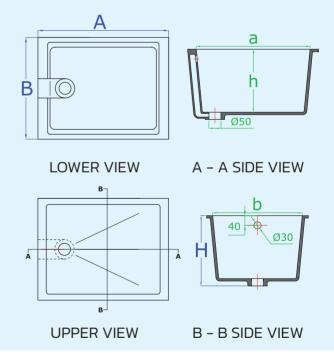
LOWER VIEW

UPPER VIEW


B - B SIDE VIEW

Rectangular Sinks

RECTANGULAR SINKS EXTERNAL OVERFLOW

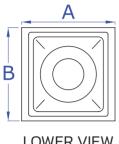

CODE	Α	В	Н	a	b	h	kg
CCHA E	540	450	270	470	380	250	13,5
CCHA F	645	450	270	570	380	250	17

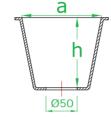
ON TOP - FLUSH - UNDER TOP MOUNTING

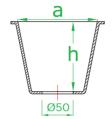
RECTANGULAR SINKS INTEGRATED OVERFLOW

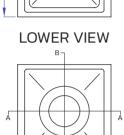
CODE	А	В	Н	а	b	h	kg
ССНА Е	540	450	310	470	370	250	14

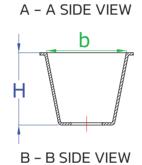
UNDER TOP MOUNTING

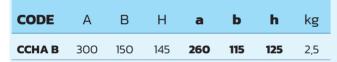


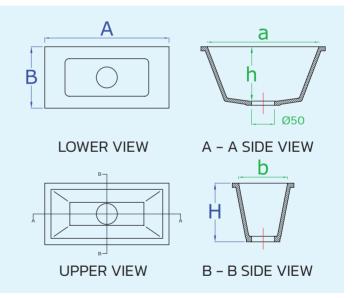


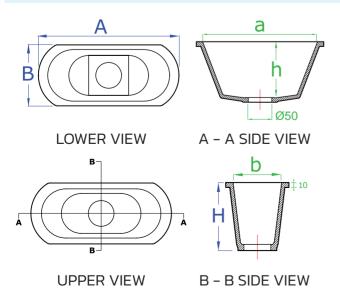



Small & Special Sinks




UPPER VIEW


CODE	Α	В	Н	a	b	h	kg
ССНА Р	100	100	100	85	85	90	0,6
CCHA Q	150	150	140	120	125	125	1,2
ССНА А	ø170	_	110	ø 130	-	90	0,9


ON TOP - FLUSH - UNDER TOP MOUNTING

RECTANGULAR SINK

ON TOP - FLUSH - UNDER TOP MOUNTING

OVAL SINK

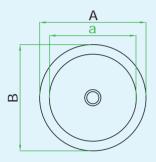
CODE	А	В	Н	а	b	h	kg
ссна о	300	135	145	255	105	125	2,5

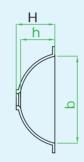
ON TOP - FLUSH - UNDER TOP MOUNTING

Special "Hand Washing Station" Sinks

HAND WASHING STATION

The optimum solution for personal cleaning with maximum hygiene.


A more welcoming space for the care of the staff can be created in the laboratory environment with specially designed sinks.

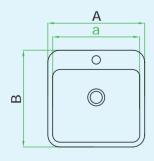

The sinks have ergonomic and functional shapes to optimaze their use and dedicated spaces in working conditions.

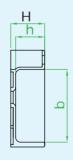
The glazed surfaces have an high resistance to acid, bases and organic solvents.

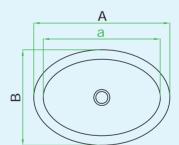
They need only easy and simple sanitation; effective and long-lasting even using detergents with low environmental impact.

The sinks are designed to be used "on top", "under the top" and "flash" mounted, customizable for any needs.

ROUND SINK


CODE	А	В	Н	а	b	h	kg
AVGL A	ø460	-	170	ø380	-	155	6,6


ON TOP - FLUSH - UNDER TOP MOUNTING


OVAL SINK

CODE	Α	В	Н	а	b	h	kg
AANL A	570	410	170	500	340	155	7,4

ON TOP - FLUSH - UNDER TOP MOUNTING

SQUARE SINK

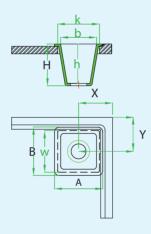
CODE	Α	В	Н	a	b	h	kg
ATEL A	400	400	170	360	280	155	12,5

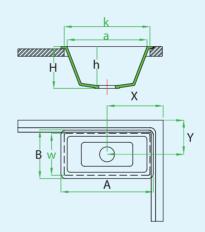
ONLY ON TOP MOUNTING

Special "On Top" Small Sinks

The SPECIAL "ON TOP" SMALL SINKS

Range of sink designed to optimize the "on top" mounting performances and to prevent the accidental spillage of dangerous substances into the drain hole.


This safety condition can be obtained with sinks having a frame, with a shaped edges, that can couple with the profile of the raised edges of the worktop. In this way a high-relief area on the worktop is created that protect by any accidental spillage.


Using epoxy glues it is possible to fix the sink to the worktop and at the same time seal the coupling sides between the raised edges of the top and the frame of the sink

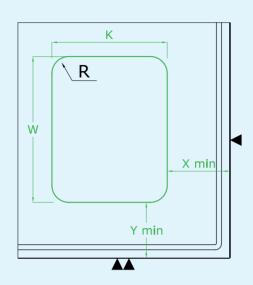
This solution meets the rigorous specifications of international standards, eliminates the need to specialize an area of the worktop and allows for interesting savings.

The shapes of the edges of the sinks and their positioning with respect to the raised edges of the worktops, are an effective solution to optimize the cleaning of the most critical areas for potential accumulation of dirt where contamination from bacteria and germs can generate.

Effective, long lasting and simple sanitation even using detergents with low environmental impact.

ON TOP Sinks

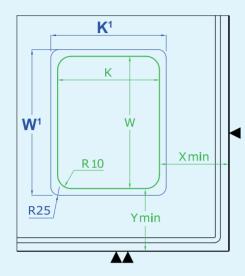
CODE	А	В	Н	а	b	h	W	K	Xmin	Ymin	kg
CCHA R	175	175	145	125	125	125	145	145	114	114	1,5
CCHA S	325	175	145	260	115	115	290	145	122	114	3


ONLY ON TOP MOUNTING

Sinks - **Under Top** mounting

▲ GLAZED EDGE
 ▲ CUT AND COLD ENAMELLED EDGE
 △ CUT EDGE

UNDER TOP

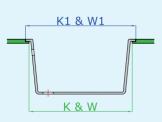

UNDER TOP MOUNTING

CODE	W	K	X min	y min	R
EU Sinks					
CCHA K - 380 x 160 mm	360	140	90	90	20
CCHA H - 390 x 240 mm	370	220	90	90	20
CCHA V - 400 x 400 mm	380	380	90	90	20
CCHA X - 500 x 400 mm	480	380	120	120	20
CCHA Y - 600 x 400 mm	580	380	120	120	20
CCHA Z - 800 x 400 mm	780	380	120	120	20
SQUARE Sinks					
CCHA C - 300 x 300 mm	240	240	70	70	50
CCHA D - 400 x 400 mm	320	320	80	80	50
CCHA G - 450 x 450 mm	350	350	90	90	50
RECTANGULAR Sink	S				
CCHA E - 540 x 450 mm	440	350	120	120	50
CCHA F - 645 x 450 mm	540	350	120	120	50
SMALL Sinks					
CCHA P - 100 x 100 mm	75	75	50	50	20
CCHA Q - 150 x 150 mm	110	110	50	50	20
CCHA A - Ø 170 mm	ø120	-	50	50	-
CCHA O - 300 x 130 mm	240	90	60	60	50
CCHA B - 300 x 150 mm	245	100	60	60	50
HAND WASHING STA	TION Si	nks			
AVGL A - Round sink	ø360	-	90	90	-

These types of sinks must be fixed on the lower side of a worktop. The sink hole has glazed edges and its dimensions are a bit smaller than the sink ones; this allows an excellent drainage of liquids into the sink. The sinks can be sealed using permanently elastic silicone and they have an unglazed frame to improve silicone bonding. Permanently silicone sealing makes easy a later disassembling of the sink. In order to optimize packing and transportation costs sinks are normally supplied as detached parts. It is possible to assemble the sinks on the worktops before the dispatch.

Sinks - On Top and Flush mounting

▲▲ GLAZED EDGE


▲ CUT AND COLD ENAMELLED EDGE

△ CUT EDGE

ON TOP

FLUSH MOUNTED

ON TOP & FLUSH MOUNTING

0 185 0 285 0 430 0 430	70 80 90	70 80 90	430 460 480	210						
) 285 O 430	80	80	460							
0 430	90			310						
		90	400							
0 430			480	480						
	120	120	580	480						
0 430	120	120	680	480						
5 285	70	70	310	310						
0 360	80	80	410	410						
) 410	90	90	460	460						
RECTANGULAR Sinks										
0 410	120	120	550	460						
5 410	120	120	655	460						
90	50	50	110	110						
) 140	50	50	160	160						
O -	50	50	ø170	-						
5 120	60	60	310	140						
5 135	60	60	310	160						
Sinks										
′0 –	90	90	ø420	-						
0 420	90	90	530	370						
	5 285 0 360 0 410 0 410 5 410 0 90 0 140 0 -	0 430 120 5 285 70 0 360 80 0 410 90 0 410 120 5 410 120 0 90 50 0 140 50 0 - 50 5 120 60 5 135 60 1 Sinks	20 430 120 120 25 285 70 70 20 360 80 80 20 410 90 90 20 410 120 120 20 5 410 120 120 20 90 50 50 20 140 50 50 20 - 50 50 25 120 60 60 25 135 60 60 21 Sinks	20 430 120 120 680 5 285 70 70 310 0 360 80 80 410 0 410 90 90 460 0 410 120 120 550 5 410 120 120 655 0 90 50 50 110 0 140 50 50 160 0 - 50 50 0170 5 120 60 60 310 5 135 60 60 310 1 Sinks						

These types of sinks provide for coupling with the work surface on site. This feature can facilitate and speed up the activity of the assembly of worktops. These sinks have a glazed frame and can be mounted in two way: **Top-mounted** & **Flush-mounted**.

Sinks are **Top-mounted** in Water Jet cut shaped holes, so with unglazed edge.

Sinks are **Flush-mounted** in a stepped and shaped holes. If the hole is machined by a CNC milling machine, its edge is unglazed. The external profile of the glazed sink frame can be adjusted to measure by a Water Jet cut.

LP srl

Via della produzione, 94 61025 Montelabbate [PU] P.Iva e C.F. 02693650414

www.monolite.com

